Biophysics Notes 

Chapter VIII

VIII. EPR

A. The resonance phenomena

1. hf = E

E = - .H =- Hcos(,H), where is the magnetic moment and H is the magnetic field.  We define the direction of H, conventionally, as the z-direction.

So E = -zH

For an electron,

S, where  is the magnetogyric ratio, classically = -e/(2mc)

Sz = msħ = ± ½ ħ

Quantum mechanically we have:
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z = -g
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ms = -g ms,  = 
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= 0.92 x 10-23 J/T

g = 2.00232 for a free electron

( E = g Hms = ± ½g H

Have resonance(absorption) when hf = g Hr, where Hr is the resonant field (B in diagram at left).

Microwaves polarized perpendicular to field excite magnetic dipole.

Typically, f ~ 9.5 GHz, Hr = 3400 Gauss, Data taken by scanning H with f () constant.

2. QM description
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E = ± ½ g H

B. Relaxation and Line widths

1. Origins of line-broadening

a. Secular broadening = varying local magnetic fields 

Temporal – homogeneous, add Mn in solution (fluctuates)

Spatial – inhomgeneous, freeze Mn

Homogeneous broadening usu. Lorentzian and inhomogeneous broadening is Gaussian

b. Lifetime broadening – HUP

Et ~ ħ or

ft ~ /2

f ~ (g/h)H

Thus, H ~ ħ/(gt) ~ 1/(et)

Increasing rate of transition decreases t and thus increases H i.e. linewidth 

2. Relaxation times

a. Spin Lattice relaxation – caused by interaction of spin and surrounding through random motions ( natural of inherent linewidth

T1: H = (ħ/g)(1/2T1)
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Measures recovery after perturbation

b. T2' = spin-spin relaxation time – secular sources mentioned above.

c. Observed relaxation time:

1/T2 = 1/T2' + 1/2T1 – related to observed linewidth

d. Limits

T2 too small – too much broadening

T2 too big – doesn’t go back to gs – get saturation

T1 is very temperature dependent (usually as temperature decreases T1 increases).  For transition metals at room temperature, T1 is so small that the line width is 1000s of gauss wide – So as temperature decreases T1 increases.

3. Net absorption as a function of Spin population

N+/N- = exp[-(E+ - E-)/kBT]

= exp[-gH/ kBT] 

With gH << kBT and carrying out expansion of exponent (
N+/N- ~ 1 - gH/ kBT = 1 – hf/ kBT

For f ~ 1010 Hz and T = 300 K, N+/N- = 0.9984, so only small number absorb.

4. Microwave Power and the saturation phenomenon

Energy transfer from spin system to lattice 

dE/dt = k1 kB(Ts – TL), with Ts = temperature where boltzman distribution gives observed population difference, n = N- - N+, TL = temperature of environment of lattice system, k1 = 1/T1 

k2 = energy input rate from microwaves

if k2 << k1 then no saturation and have Ts ~ TL and have no change in boltzman distribution

if k2 ~ k1 then Ts > TL and n decreases

5.  Relaxation Times from Transition Probababilities

Pup = probability of up conversion

Pdown = probability of down conversion

n = N- - N+, N = N- + N+
dN-/dt = N+Pdown – N-Pup

dN+/dt = -N+Pdown + N-Pup

dn/dt = dN+/dt – dN-/dt = P(-N+Pdown + N-Pup - N+Pdown + N-Pup) = -2nP, w/ P = Pup = Pdown

( n = n(0)e-2Pt, w/ n(0) = n when turn on microwaves 

so as t gets large, n ( 0.

So how do we get a Boltzman-like distribution?

( Need decay to lattice.

Define Wup and Wdown for lattice induced transitions.

dN-/dt = N+Wdown – N-Wup = (n – n0)(Wup – Wdown), w/ n0 = n for boltzman distribution (derivation not shown).

Wup is not equal to Wdown.  

T1 = (Wup + Wdown)-1
dn/dt = (n-n0)/T1
n-n0 = [n=n0]t=oexp(-t/T1), so T1 says how fast return to n = n0.

C. g factors

ge = 2.0032 for free e-, if Hr is the magnetic field at e- local field can perturb field at electron

Hr = observed resonance

geff = hf/Hr 
[image: image22.png]100 G




(NMR have hf = gNN(1-), w/  being the chemical shift).

Main contribution to local magnetic field is spin orbit coupling – mixing excited states into gs causes orbital magnetic moment.

g is usually anisotropic – depends on orientation of field and molecule

All g-values can be written is terms of principle axes (really a tensor),

gxx, gyy, gzz, if gxx = gyy have axial symmetry ( gparallel and gperpendicular
If lines not too broadened, can still get asymmetry in resonance.
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In the case of axial symmetry, will have more molecules @ gperpendicular
than gparallel.  

D. Nuclear Hyperfine Interaction

G anisotropy due t induced local fields.

There exist permanent local fields (independent of H) mostly due to nuclear magnetic moment.

Nuclear spin characterized by I = 0, ½,1, 3/2, 2 …

znuclear characterized by Sznuclear w/ quantum number MI
MI = -I, -I + 1, ….I-1, I, so get 2I+1 nuclear spin states

	atom
	1H
	2H
	13C
	14N
	15N
	17O
	37Fe

	Spin
	1/2
	1
	1/2
	1
	1/2
	5/2
	1/2
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I = 0 for all nuclei w/ equal atomic mass and number (pairs of protons and neutrons cancel)

Heff = Hext + Hlocal ( Hext = Heff - Hlocal

So there will be 2I+1 possible Hr ( hyperfine splitting

For hydrogen (for example) get 

Hr = H' 
[image: image7.wmf]m

 a/2 = H' – a MI
a/2 = local magnetic field

H' = magnetic field when a = 0

a = splitting in gauss between two hyperfine lines = hyperfine splitting constant

selection rule, ms = ± 1, mI = ± 0

[image: image26.wmf] 


E. Origins of the hyperfine interaction

1. Classical picture

Hlocal = nz (3 cos2() –1)/r3
With  = angle between H and line between e and nz. nz = nuclear magnetic moment.

Hlocal effective is calculated by averaging over , for s oribital <cos2()> = 1/3 ( no hyperfine interaction (but do see one for hydrogen s orbital) 

= isotropic hyperfine interaction – when e- can be at nucleus (p, d have nodes at nucleus)

s orbitals – isotropic hyperfine

p,d,f – anisotropic hyperfine

2. QM description 

Dipole (anisotropic) term
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 EMBED Equation.3  [image: image9.wmf]S
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 being the electron and nuclear spin operators and 
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is an operator (3x3 matrix) that depends on the position of electron w/r nucleus – it is zero for the s orbital.

Isotropic Hamilton term
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A0 = hyperfine coupling constant [MHz]

|(0)|2 = 0 except for s orbitals
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3. Example of H atom

Four possible spin states:

|e, n>, |e, n>, |e, n>, |e, n>  

When 


[image: image14.wmf][

]

z

z

y

y

z

z

0

iso

e

e

z

e

e

n

n

n

n

z

I

S

I

S

I

S

hA

H

N

2

1

N

S

e

2

1

e

I

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

,

,

ˆ

,

,

ˆ

+

+

=

b

a

±

=

b

a

b

a

±

=

b

a


Last two terms have a negligible effect
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E = ½ gH + ¼ hA0

E = ½ gH - ¼ hA0

E = -½ gH + ¼ hA0

E = -½ gH - ¼ hA0

Selection rules: ms = ± 1, mI = ± 0

Check out figure 1-7 above, remember eigenvalues for  are +1/2, -1/2

E1 = EEgH + ½ hA0

E2 = EEgH - ½ hA0

Usually hf0 = constant, get resonance at 

H1 = hf0/g - ½hA0/g = H' – ½ a

H2 = hf0/g + ½hA0/g = H' + ½ a

Like we had above w/ a being the hyperfine splitting constant, H' = Hr w/a=0.

4. Fast tumbling and frozen samples

a. If sample is tumbling fast then all orientations are likely <cos()> = 1/3 ( No anisotropic hyperfine splitting.

b. Crystal – splitting is a function of orientation of the crystal Pxxparallel, Pyyparallel etc.

c. Powder – superposition if all orientations – often have linewidth > splitting so get washed out line if hyperfine splitting is large.
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Fig. 15 Possible orientations of the nuckear-spin
vector for I = $. The z component of the nuclear
spin is quantized such that M, = §, 3,3, -4, -4,
—4. The magnitude of the nuclear-spin vector is

V3@ + 1) = V3T in units of /2x.




Eg.  Axial symmetry (x-y) and one nucleus with I = ½.

[image: image28.wmf] 

Hlocal = nz (3cos2() –1)/r3 (  = 0o, Hlocal = H' ± apar/2

 = 90o, Hlocal = H' 
[image: image16.wmf]m

 apar/2

for mI ± ½, assume apar > aper, get resonance at H' - apar/2. H' - aper/2, H' + aper/2, H' + apar/2

F. Origin of the hyperfine interaction with more than one magnetic nucleus

1. Electron coupled to set of equivalent nuclei, eg. 
[image: image17.wmf].

C

H2OH (12C and 16O have no nuclear spin, so get it from two H (I = ½)).

So have 2nI + 1 lines with intensities obtained from a binomial [image: image29.wmf] 

expansion, (1+x)n
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2. Inequivalent Nuclei

I = ½ for both w/ ± a1 and ± a2

[image: image31.wmf] 


	MI
	H local
	Total

H local
	Hr
	Relative

Intensity

	1
	2
	1
	2
	
	
	

	½
	½
	a1/2
	a2/2
	a1/2 + a2/2
	H'-a1/2-a2/2
	1

	½
	½
	a1/2
	a2/2
	a1/2 - a2/2
	H'-a1/2+a2/2
	1

	½
	½
	a1/2
	a2/2
	-a1/2 + a2/2
	H'+a1/2-a2/2
	1

	½
	½
	a1/2
	a2/2
	-a1/2 - a2/2
	H'+a1/2 + a2/2
	1


G. Transition metals – incomplete 3d1, 4d1, 5d shells (Mn, Fe, Co, Cu, Mo, V)

1. Special Features

· [image: image32.wmf] 

Spin-orbit coupling is strong and has huge anisotropy

· [image: image33.wmf] 

[image: image34.wmf] 
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Spectrum affected by environment, esp. ligation

· Need low temperature

· If have ion with even number of unpaired electrons, ESR is tiny

2. Fe3+  d5
 is the separation energy (from eg and t2g) from crystal field splitting 

Further perturbation can cause further splitting

Poryphrin – highly distorted octahedryl field breaks down 16-fold degeneracy of S = 5/2.  

Spin-orbit coupling greatly affects T1 – if  is large, spin oribit coupling is small and T1 is long – go to low temperatures.

H. Experimental Considerations

1. Simple Spectrometer


Klystron- radio tube – source of radio waves (microwaves).  Waves travel in wave guide.  Vary H field.

2. Typical ESR spectrometer

a. Source

Usually f = 9.5 GHz = X band ~ 3 cm ( easy to polarize with wave guide

Also have K band: 24 GHz

Q band: 35 GHz

Tune Klystron w/ tuning stub or varying reflection voltage.

Attenuator- vary input power, use db = 10 log (Pout/Pin)

b. Cavity – acts like lens for light

Reflection and transmission set up standing wave

Want (1) High energy microwave (density)

(2) High H, low E 

(3) Have Hwave perpendicular to Happlied (need for allowed spin transtion)

Q = 
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= r/with r = resonant frequency of cavity

= frequency difference ( power in cavity is proportional to P0Q

c. Modulation and detection systems

1. Detector: silicon crystal or semiconductor device: microwaves ( current

If get absorption ( Q decreases ( current decreases

2. Phase sensitive detection

Helmholtz coils make ac magnetic field with m on top of constant dc field.  Amplify ac part w/ narrow band pass amplifier, use lock-in amp with m ( first derivatve of absorption spectrum.  m ~ 100 kHz. 

d. Magnet System

Should be temporally and Spatially homogeneous

Use Hall effect crystal (voltage  field) and feedback loop for stability

e. Lineshapes and widths

Lorentzian – long tail, homogeneous broadening gaussian, different resonances

f. Sensitivity

Measure minimum number of detectable centers (Nmin)

Nmin = 
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Vs = sample volume

Td = detector temperature

k = boltzman constant

b = bandwidth

Ts = sample temperature

b = -1, = time 

Hpp = peak to peak 1st 

constant of output 


derivative of ESR 

filter


signal


Q = unloaded Q factor

F = noise figure (>1)

 = filling factor usu.

P0 = power incident on 

2Vs/Vc, Vc = cavity
cavity




volume

Typically, Nmin = 2 x 1011 Spins

· Signal is proportional to Po1/2 up to saturation

· Signal averaging – S/N goes as (# measurements)1/2

· Effect of modulation amplitude and frequency
H = H0 + Hmsin(2mt)

For max sensitivity, Hm = 2 Hpp for Lorentzians

And = Hpp for Gausssians.  This, however, broadens and distorts lines, m can be pathologically small for small resonances but otherwise no effect

g. g values – use standard

gx = gsHX/Hs 
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